The biomimetic apatite-cefalotin coatings on modified titanium.

نویسندگان

  • Min-Kyung Kang
  • Sang-Bae Lee
  • Seung-Kyun Moon
  • Kwang-Mahn Kim
  • Kyoung-Nam Kim
چکیده

Dental implant failure often occurs due to oral bacterial infection. The aim of this study was to demonstrate that antibiotic efficacy could be enhanced with modified titanium. First, the titanium was modified by anodization and heat-treatment. Then, a biomimetic coating process was completed in two steps. Surface characterization was performed with scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. Release of antibiotic was evaluated by UV/VIS spectrometry, and the antibacterial effect was evaluated on Streptococcus mutans. After the second coating step, we observed a thick homogeneous apatite layer that contained the antibiotic, cefalotin. The titanium formed a rutile phase after the heat treatment, and a carbonated apatite phase appeared after biomimetic coating. We found that the modified titanium increased the loading of cefalotin onto the hydroxyapatite coated surface. The results suggested that modified titanium coated with a cefalotin using biomimetic coating method might be useful for preventing local post-surgical implant infections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gelatin-Modified Biomimetic Apatite Coatings

Biomimetic coatings constituted of gelatin and nanocrystalline apatite were deposited on titanium substrates from a slightly supersaturated calcium phosphate (CaP) solution enriched with different amounts of gelatin. Although the biopolymer inhibits the crystallization of the inorganic phase, as shown by the reduction of the mean dimensions of the spherical aggregates and of the degree of cryst...

متن کامل

Biomimetic Deposition of Hydroxyapatite on Titanium Implant Materials

Lindahl, C. 2012. Biomimetic Deposition of Hydroxyapatite on Titanium Implant Materials. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 986. 57 pp. Uppsala. ISBN 978-91-554-8510-8. The clinical success of a bone-anchored implant is controlled by many factors such as implant shape, chemical composition, mechanic...

متن کامل

Strontium-substituted apatite coating grown on Ti6Al4V substrate through biomimetic synthesis.

During the last few years Strontium has been shown to have beneficial effects when incorporated at certain doses in bone by stimulating bone formation. It is believed that its presence locally at the interface between an implant and bone will enhance osteointegration and therefore, ensure the longevity of a joint prosthesis. In this study we explore the possibility of incorporating Sr into nano...

متن کامل

Structure, cell response and biomimetic apatite induction of gradient TiO2-based/nano-scale hydrophilic amorphous titanium oxide containing Ca composite coatings before and after crystallization.

Chemical treatment was used to modify the surface of microarc oxidized (MAO) coating containing Ca and P. And the chemically treated MAO (C-MAO) coating was further heat-treated at 400-800 degrees C. The average roughness of the MAO and C-MAO coatings is about 250 nm; further heat treatment improved the roughness of the C-MAO coating. The chemical and heat treatment enhanced the wetting ability...

متن کامل

Modification of calcium-phosphate coatings on titanium by recombinant amelogenin.

Amelogenin proteins, the principal components of the developing dental enamel extracellular matrix, have been postulated to facilitate the elongated and oriented growth of the carbonated apatite crystals during enamel formation. We previously reported that amelogenin caused modulation of apatite crystals nucleated on a bioactive glass (Bioglass(R)) in vitro. Here, the effects of amelogenin on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dental materials journal

دوره 31 1  شماره 

صفحات  -

تاریخ انتشار 2012